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The change-point detection has been carried out in terms of the
Euclidean minimum spanning tree (MST) and shortest Hamilto-
nian path (SHP), with successful applications in the determination
of authorship of a classic novel, the detection of change in a
network over time, the detection of cell divisions, etc. However,
these Euclidean graph-based tests may fail if a dataset con-
tains random interferences. To solve this problem, we present
a powerful non-Euclidean SHP-based test, which is consistent
and distribution-free. The simulation shows that the test is more
powerful than both Euclidean MST- and SHP-based tests and the
non-Euclidean MST-based test. Its applicability in detecting both
landing and departure times in video data of bees’ flower visits is
illustrated.

non-Euclidean distance | shortest Hamilton path | minimum spanning
tree | change-point | distribution-free

Webcams are used in both daily life and research projects.
Such examples include visitors’ motion detection via a

home security system, video fire detection via a fire detection
system, study of the behavior of a rare and big but dangerous
animal, magnetic resonance imaging analysis of some functions
(e.g., learning function) of a part of a brain, and investiga-
tion of bees’ flower visitation. A webcam collects tons of short
video clips. However, many of video clips do not contain any
information of interest, and hence, they can be and should be
removed for efficiency, effectiveness, and economy of the variety
of purposes. For example, to investigate the movement pattern
of bees, one may use webcams to record a bee’s flower visita-
tion to find the duration of the bee on the flower (1). Huge
video data need to be analyzed to accurately investigate bees’
flower visitation. However, in all of the above examples, there
may exist unexpected (i.e., random) interferences. For instance,
in the bees’ flower visitation example, relatively smaller insects,
such as ants, may also visit the flower unexpectedly; these are
the random interferences and are not avoidable. Fig. 1 displays
four selected frames from those extracted every second from
a recorded video. It can be seen that the flower was visited
by both bees and ants, and it can also be seen that they were
landed in different places of the flower. Thus, we are inter-
ested in keeping the video data only containing bees’ flower
visitation.

The removal of the informationless video data in the exam-
ples given above can actually be converted into a change-point
detection problem for high-dimensional data that contain ran-
dom interferences. Consider the bees’ flower visitation example
for demonstration. Here, the sequence of data consists of a
sequence of vectorized pixel values from frames, and both land-
ing and leaving times of bees make large changes in vectorized
pixel values and can thus be considered as change points in
the data sequence. A well-performed change-point detection
method would allow users to remove large but informationless

video data in such examples, which can be carried out daily or
other regular basis.

Many change-point detection methods can be found in litera-
ture. Refs. 2 and 3, among others, gave change-point analyses for
high-dimensional time series, where the data structure changes
in a fixed subset of components. Graph-based change-point tests
have been developed recently for their advantage in describ-
ing high-dimensional data, which date back to Friedman and
Rafsky (4) for a two-sample test via applying the minimum
spanning tree (MST). In terms of Friedman and Rafsky (4),
Chen and Zhang (5) proposed a change-point test. However,
the test based on MST is not distribution-free and is not con-
sistent when there is a shift in variance in high-dimensional
settings as shown in ref. 6. By applying the shortest Hamilto-
nian path (SHP) introduced in ref. 7 for a two-sample test, ref.
6 proposed a distribution-free and consistent change-point test.
We remark that both of the above change-point tests are con-
structed in terms of Euclidean graph, which may not perform for
the problem considered in this paper. Consider the bees’ flower
visitation example. The issue arises because (i) the random inter-
ferences by small insects may lead to the changes of vectorized
pixel values, which could not be ignored, and (ii) the pixel val-
ues change at a relatively large number of unknown image points
for a bee but a small number of unknown image points for
a small insect, such as an ant. Both locations and amounts of
changes in pixel values are unknown, which make the Euclidean
graph-based change-point tests not to perform. The issue may be
resolved by replacing the Euclidean distance by a non-Euclidean
distance.
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Fig. 1. Extracted frames with dimension 288× 352 located at 1, 5, 40, and 49 from the original video 09-10-2010 15h 49 27.17.mpg (faculty.tru.ca/xshi/09-
10-2010 15h 49 27.17.mpg). The landing and departure times of the bee are 5 and 41, respectively.

Non-Euclidean Graph-Based Change-Point Test
We first vectorized the matrix of pixel values of the tth image
into a d -dimensional vector, with d being the number of pixels
in this image. To show how to remove large but information-
less video data in any example described above, we use the bees’
flower visitation example for demonstration. We assume that,
at most, a single bee has visited the flower for simple presen-
tation. The possible scenarios include (i) there is no insect on
the flower; (ii) there are only a few small insects, such as ants,
on the flower; and (iii) there is a bee on the flower. It is noted
that both small insects and a bee may land on any place of the
flower. The following model can be used to model such video
data, where the three parts of this model correspond to the above
three scenarios, respectively:

yt,j =

µj +σet,j , if j /∈J t and j /∈Kt ,
a1 + b1εt,j , if j∈J t and j /∈Kt ,
a2 + b2ηt,j , if j∈Kt ,

[1]

where yt,j is observation at time t ∈{1, . . . ,N } and location
of component j ∈{1, . . . , d}; µj , σ, and a` b` for `=1, 2 are
unknown parameters; and et,j , εt,j , and ηt,j are independently
and identically distributed errors with mean zero and variance
one. The first part is to model the distribution of pixel values
when there are no insects or bees, the second part is for those
pixel values of the insects, and the third part is for those pixel
values of the bee. We let Jt for 1≤ t ≤N and Kt for t∗<
t ≤N (Kt = ∅ for 1≤ t ≤ t∗) be independently and identically
distributed samples with sizes |J t | and |Kt |, respectively, from
{1, . . . , d} without replacement to reflect the random movement
of insects and bee. If there exists a t∗<N , such that Kt∗ 6=∅, the
time t∗ is called a change point. For simple presentation, we let
|J t | ≡ |J | for 1≤ t ≤N and |Kt | ≡ |K| for t∗< t ≤N .

To detect whether there is a change point t∗, it is equivalent
to test the following hypotheses:

H0 :Kt ≡∅ for 1≤ t ≤N vs. Ha :

{
Kt ≡∅ for 1≤ t ≤ t∗,
Kt 6=∅ for t∗< t ≤N .

Let G be a connected, edge-weighted undirected graph made up
of a set of nodes V (G)= {1, . . . ,N } together with a set of edges
E(G). The Euclidean edge weight between two nodes t1 and t2
is given by

wt1,t2 =

√√√√ d∑
j=1

(yt1,j − yt2,j )
2. [2]

However, the Euclidean graph-based tests have low power in
detecting a change point by simulation studies. Thus, we replace
the Euclidean edge weight by the following non-Euclidean edge

weight:

w∗t1,t2 =

∣∣∣∣∣
d∑

j=1

yt1,j −
d∑

j=1

yt2,j

∣∣∣∣∣. [3]

For example, a graph G can be an MST or an SHP based
on the Euclidean edge weight Eq. 2 or the non-Euclidean edge
weight Eq. 3 denoted MST(w), MST(w∗) or SHP(w), SHP(w∗),
where the sum of edge weights attains the minimum among all of
the spanning trees or paths, respectively. To test the null hypoth-
esis, we cut the whole set of nodes {1, . . . ,N } at an arbitrary
point t into two sets {1, . . . , t} (until t) and {t +1, . . . ,N } (after
t). As in ref. 5, for the Euclidean edge weight Eq. 2, we define

C
G(w)
t =

∑
(t1,t2)∈E(G(w))

I {I (t1> t) 6= I (t2> t)}. [4]

Ref. 5 proposed an MST-based test, denoted MST in this paper,
with the test statistic

C̃
MST(w)
N = max

n0≤t≤n1

Z
MST(w)
t , [5]

where Z
MST(w)
t =−

C
MST(w)
t −E0

(
C

MST(w)
t

)
√

var0
(
C

MST(w)
t

) , with G(w) being re-

placed by MST(w) in Eq. 4; n0 and n1 are prespecified con-
straints, and E0(C

MST(w)
t ) and var0(C

MST(w)
t ) are expectation

and variance, respectively, of C
MST(w)
t under the permutation

null. Note that this test is nonparametric but not distribution-
free. If the null hypothesis is rejected, the change-point estimate
is given by

arg max
n0≤t≤n1

Z
MST(w)
t . [6]

For the same Euclidean edge weight Eq. 2, ref. 6 proposed an
SHP-based test, denoted SHP in this paper, with the test statistic

S
SHP(w)
N =

1

N − 1

N−1∑
t=1

(Z
SHP(w)
t )

2
, [7]

where Z
SHP(w)
t =

C
SHP(w)
t −E0

(
C

SHP(w)
t

)
√

var0
(
C

SHP(w)
t

) , with G(w) being replaced

by SHP(w) in Eq. 4, E0(C
SHP(w)
t )= 2t(N − t)/N , and

var0(C
SHP(w)
t )= 2t(N − t){2t(N − t)−N }/(N 3−N 2) (8). If

the null hypothesis is rejected, the change-point estimate is given
by

arg min
1≤t<N

C
SHP(w)
t /{t(N − t)}. [8]
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We now define both non-Euclidean SHP- and MST-based
test statistics by replacing the Euclidean edge weights Eq. 2
with the non-Euclidean edge weights Eq. 3 in both test statistics
Eq. 7 and Eq. 5. We denote so-defined test statistics S SHP(w∗)

N and
C̃

MST(w∗)
N , respectively. These lead to the non-Euclidean SHP-

and MST-based change-point tests, which are denoted SHP∗

and MST∗, respectively, in this paper. If the null hypothesis is
rejected by SHP∗ or MST∗, the change-point estimate is given
by the ratio cut as in Eq. 8 or by Eq. 6, respectively. SHP∗ and
MST∗ will also denote the non-Euclidean SHP-based change-
point detection and the non-Euclidean MST-based change-point
detection, respectively, for convenience.

To illustrate the different edge weights, we consider a mean
shift model by setting N =10, d =3, u1 = u2 =0, u3 =−1, a1 =
0.1, a2 =2, and σ= b1 = b2 =1; et,j , εt,j , and ηt,j are standard
normal errors. |J |=1 and |K|=2 in Eq. 1, with a change point
at five. Note that the Euclidean MST-based change-point detec-
tion was implemented in the R package gSeg (9) with default
settings n0 =0.05N and n1 =0.95N , while the Euclidean SHP-
based change-point detection can be carried out by using the
msTreeKruskal function in the R package optrees (10).

An illustration is given in Fig. 2, from which it can be seen that
the change-point estimate by SHP∗ is the same as the true one,
but the other three tests produce biased change-point estimates
that are eight, six, and eight, respectively.

It seems that the model Eq. 1 would only be suitable for study-
ing a bee’s landing. In fact, it is also the right model for studying
a bee’s departure, because we may set Kt 6=∅ for 1≤ t ≤ t∗ and
Kt ≡∅ otherwise. Thus, SHP∗ and MST∗ remain unchanged.

Consistency of the Non-Euclidean SHP-Based Test
Consider SHP∗ given above. We will show that it is consistent
with fixed N and d→∞.

Assumption 1. Suppose that a1 6= a2, |J |� |K|,
√
d�|K|, and

max(|L1|, |L2|)�|K| as d→∞, where L1 = {j :µj − a2 =0}
and L2 = {(i , j ) :µi 6=µj for i 6=j}.

Assumption 2. There exists an Nα, such that

min
{ ∑
|t−t∗|≤Nα

1

N − 1

N−1∑
t=1

{κt −E0(C
SHP
t )}2

var0(C SHP
t )

:κt∗ ≤ 2,

|κt −κt±1| ≤ 2
}
> cα.

We remark that Assumption 1 stems from the bee’s flower
visitation example, in which the following are met: (i) a bee
is quite large compared with other small insects, such as ants
(|J |� |K| and a1 6=a2); (ii) a bee is not much smaller than the
flower (

√
d�|K|); (iii) the color of a bee is different from that

of the flower (|L1|� |K|); and (iv) the whole flower has almost
the same color (|L2|� |K|). Assumption 2 comes from ref. 6.

The following theorem shows that SHP∗ is consistent.

Theorem. Under Assumptions 1 and 2, for a predefined positive
number α, the power of the non-Euclidean SHP-based test of
significance level α converges to one as d→∞.

Proof: By Eq. 3,

w∗t1,t2 =
∣∣∣ d∑
j=1

{yt1,j −E(yt1,j )}−
d∑

j=1

{yt2,j −E(yt2,j )}

+

d∑
j=1

{E(yt1,j )−E(yt2,j )}
∣∣∣.
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Fig. 2. An illustration of SHP and MST based on Euclidean or non-Euclidean edge weight and the corresponding change-point estimates for N = 10 and
d = 3. Upper depicts the MST in a complete Euclidean graph (column 1), the SHP in a complete Euclidean graph (column 2), the MST in a complete non-
Euclidean graph (column 3), and the SHP in a complete non-Euclidean graph (column 4). Lower displays the corresponding change-point estimates for the
four graphs given in Upper.
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Table 1. Simulated type I errors for SHP∗

d 10 50 100 500 1,000 5,000

N = 20 0.052 0.042 0.059 0.060 0.057 0.047
N = 40 0.039 0.052 0.039 0.042 0.054 0.055
N = 60 0.045 0.045 0.044 0.061 0.051 0.044
N = 80 0.048 0.047 0.032 0.038 0.047 0.048
N = 100 0.045 0.046 0.055 0.046 0.039 0.037
N = 200 0.059 0.056 0.054 0.051 0.058 0.053
N = 300 0.058 0.047 0.050 0.048 0.050 0.054

Note that
∑d

j=1{yt,j −E(yt,j )}=Op(
√
d) for 1≤ t ≤N . By

Eq. 1,
∣∣∣∑d

j=1{E(yt1,j )−E(yt2,j )}
∣∣∣ /|K|→ 0 if t1, t2≤ t∗ or

t1, t2> t∗; otherwise,
∣∣∣∑d

j=1 {E(yt1,j )−E(yt2,j )
∣∣∣ /|K|9 0 by

Assumption 1. Thus, we have

lim
d→∞

w∗t1,t2/|K|
{
=0, if t1, t2≤ t∗ or t1, t2> t∗

6=0, otherwise [9]

as d→∞. The rest follows the proof of theorem 1 in ref. 6.
We remark that the conditions in Eq. 1 may be relaxed by let-

ting a1 = a1,j and a2 = a2,j (i.e., they may depend on j ). With
some additional conditions to Assumption 1, the test can still be
shown to be consistent.

It is noted that the change-point estimate given by using the
ratio cut as in ref. 6 has the same error bound as given in theorem
2 in ref. 6.

Data Examples
Simulations. For simple presentation, we only carry out the sim-
ulation studies for the model Eq. 1, with et,j , εt,j , and ηt,j being
standard normal errors.

In Table 1, the simulated type I errors for SHP∗ are compared
based on 1,000 simulations, with N =40, 60, 80, 100, 200, 300;
α=0.05; uj ≡ 0; a1 =0.1; σ= b1 =1; |J |= blog dc; Kt ≡∅; and
d =10, 50, 100, 500, 1,000, 5,000 in Eq. 1, where the critical val-
ues are taken from table 1 of ref. 6, and bcc denotes the greatest
integer less than or equal to a real number c. It can be seen from
Table 1 that the test performs well.

To examine the powers of MST, SHP, MST∗, and SHP∗, 200
simulations are carried out for a2 =0.3, b2 =1, and Kt = ∅ for
t ≤ t∗ and |K|= bd0.7c. To investigate the effect of a change-
point location for different N , the locations t∗=N /2, N /4 are
considered with N =40, 100. We set α=0.05. Fig. 3 displays the
percentages of the rejections of the null hypothesis at 0.05 sig-
nificance level by each of MST, SHP, MST∗, and SHP∗ in the
simulation study.

It can be seen from Fig. 3A that the powers of MST∗ and SHP∗

monotonically increase as d increases, which suggests that both
of them may be consistent. Compared with the powers of both
MST and SHP, both MST∗ and SHP∗ have much better perfor-
mances, especially when the change point is located at N /2. Fig.
3A also reveals that both MST and SHP may not be consistent.

Further comparisons are carried out for each of the four
change-point estimates based on argmaxn0≤t≤n1Z

MST(w)
t for

MST, argmaxn0≤t≤n1 Z
MST(w∗)
t for MST∗, argmin1≤t<N

C
SHP(w)
t /{t(N − t)} for SHP, and argmin1≤t<N C

SHP(w∗)
t /

{t(N − t)} for SHP∗. Fig. 3B displays the boxplots of these esti-
mates for each of the dimensions d1 =10, d2 =50, d3 =100,
d4 =500, d5 =1,000, and d6 =5,000.
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Fig. 3. (A) Powers of MST, SHP, MST*, and SHP* in 200 simulations with |J |= blog dc, |K|= bd0.7c, sample size of N = 40 or N = 100, and the change point
located at t* = N/2 or t* = N/4. (B) Boxplots of the change-point estimates by arg maxn0≤t≤n1

ZMST(w)
t for MST, arg min1≤t<N CSHP(w)

t /{t(N− t)} for SHP,

arg maxn0≤t≤n1
ZMST(w*)

t for MST*, and arg min1≤t<N CSHP(w*)
t /{t(N− t)} for SHP* for the dimensions of d1 = 10, d2 = 50, d3 = 100, d4 = 5,00, d5 = 1,000,

and d6 = 5,000; |J |= blog dc; |K|= bd0.7c; the respective change point located at t* = N/2 or N/4; and two sample sizes of N = 40 or 100.
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Fig. 4. CSHP(w*)
t /(t(N− t)) based on xt,j for t = 1, . . . , 49 (A) and t = 5, . . . , 49 (B). CSHP(w*)

t /(t(N− t)) based on x̃t,j for t = 1, . . . , 49 (C) and t = 5, . . . , 49 (D).

CSHP(w*)
t /(t(N− t)) based on x̃t,j for t = 1, . . . , 49 (E) and t = 5, . . . , 49 (F). CSHP(w*)

t /(t(N− t)) based on x̃t,j for t = 1, . . . , 49 (G) and t = 5, . . . , 49 (H).

It can be seen from Fig. 3B that both change-point estimates
given by non-Euclidean graph-based methods, which are com-
parable, outperform both change-point estimates by Euclidean
graph-based methods when d increases. It is noted that the
power and change-point estimate based on MST and MST∗ are
dependent on the constraints of n0≥ 1 and n1≤N − 1. Their
performances with n0 =1 and n1 =N − 1 (i.e., no constraints)
are not as good as those with n0 =0.05N and n1 =0.95N in the
default settings, which are used to produce Fig. 3. The detailed
simulation studies are omitted.

Video Data. We still use the bees’ flower visitation example
for demonstration. As we described before, relatively smaller
insects, such as ants, may also visit the flowers unexpectedly.
We analyze the original video 09-10-2010 15h 49 27.17.mpg
(faculty.tru.ca/xshi/09-10-2010 15h 49 27.17.mpg); some of 49
frames extracted from the video data are shown in Fig. 1 with
one frame per second. The details of the experiment that pro-
duced the data are given in the work by Lihoreau et al. (1). As
shown in Fig. 1, there were only some ants in the first and fourth
frames. Our aim is to locate the frame where a bee appears.

To proceed, we first convert the three intensities of the R, G,
and B components (three-dimensional array) to one intensity of
the grayscale (one-dimensional array). As reviewed by Kanan
and Cottrell (11), there are two popular methods for the con-
version. The simpler one is to convert three intensities by their
average as follows (12):

xt,j =(x1,t,j + x2,t,j + x3,t,j )/3, [10]

where x1,t,j , x2,t,j , and x3,t,j represent the three-dimensional
pixel values of the R, G, and B components, respectively.
Another one proposed by Pratt (13) is to match human bright-
ness perception by using a weighted average:

x̃t,j =0.3x1,t,j +0.59x2,t,j +0.11x3,t,j . [11]

The quality of the videos was variable depending on climatic
conditions, such as light. To have the same contrast, we make

the same-scale transformations on the pixel values xt,j from Eq.
10 or x̃t,j from Eq. 11 of 49 frames:

yt,j =(xt,j−minj xt,j )/(maxj xt,j−minj xt,j ),

ỹt,j =(x̃t,j −minj x̃t,j )/(maxj x̃t,j−minj x̃t,j ),

and thus, d =288× 352=101, 376. We construct the non-
Euclidean SHP with weight defined in Eq. 3 using yt,j . The test
statistic S

SHP(w∗)
49 =4.7, which suggests that there is a change

point at 4 for significance level 0.05. Fig. 4A displays
C

SHP(w∗)
t /(t(N − t)), where the change-point estimate is four.

Let us consider the segment for {yt,j , t =5, . . . , 49}. In view
of the fact that the test statistic S

SHP(w∗)
45 =2.8, there exists a

change-point estimate at 37 for significance level 0.05, which is
displayed in Fig. 4B. Thus, there are two change-point estimates
at 4 and 41 (=37+4), which in fact, are located at the local min-
imums in Fig. 4A. As a matter of fact, 4 and 41 are the true
change points corresponding to the landing and departure times,
respectively, of a bee.

If we replace yt,j with ỹt,j above, the same change points are
detected by applying SHP∗, which are displayed in Fig. 4 C and
D. This suggests that the impact of different weighted algorithms
for converting RGB to grayscale may be negligible.

The application of MST∗ yields the same change-point esti-
mates that are detected by SHP∗, which are displayed in Fig. 4
E–H. However, if we apply MST or SHP, their performances are
not satisfactory, as shown in Fig. 5 A and B for yt,j and Fig. 5 C
and D for ỹt,j .

Discussion and Conclusions
Using the bees’ flower visitation example as a demonstration, two
non-Euclidean graph-based change-point tests are developed for
high-dimensional data with random interferences. The proposed
non-Euclidean SHP-based change-point test SHP∗ is not only
distribution-free but also, consistent. For analyzing the video
data, we first extract it to a sequence of frames and make the
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Fig. 5. (A) ZMST(w)
t based on {xt,j}. (B) CSHP(w)

t /(t(N− t)) based on {xt,j}. (C) ZMST(w)
t based on {x̃t,j}. (D) CSHP(w)

t /(t(N− t)) based on {x̃t,j}.
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same-scale transformation of the data; then, we apply SHP∗ to
detect the bee’s landing and departure times. It is noted that the
performance of the resulting change-point estimate depends on
the number of frames per second. We have limited the discussion
to the case that there is, at most, one bee on the flower. If we
remove this assumption and allow multiple bees to visit a flower,
the following are possible cases: (i) they show up at almost same
time, or (ii) they visit the flower at different times. For both cases
i and ii, SHP∗ can be used to find out the landing of the first
bee and departure of the last bee. We remark that we may also

use MST∗; however, its performance is heavily dependent on the
constraints n0 and n1.

The model Eq. 1 can be modified to adapt to other video data
examples containing random interferences, which can be used
to remove the informationless data. The change-point detec-
tion method can be given similarly as above. The details are
omitted.
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